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S T A B I L I T Y  OF  A L A M I N A R  R I V U L E T  L I Q U I D  F L O W  IN A C Y L I N D R I C A L  D U C T  IN 

THE A P P R O X I M A T I O N  OF O N E - D I M E N S I O N A L  W A V E S  

P. I. Geshev  and A. A. Cherepanov UDC 532.543.3 

The problem of the stability of a viscous laminar liquid flow with a liquid free surface in an 
inclined duct is theoretically considered. Since the dependence of the flow rate on the free-surface 
height is not monotonic (the highest flow rate in a cylindrical duct is observed at H. = 1.7R), 
primary attention is given to the region H > H. .  It is proved that there is a region of instability: 
for an arbitrarily low Reynolds number, there is a free-surface level above which the flow becomes 
unstable against one-dimensional disturbances. When the height of the liquid layer is close to 
the vertical dimension of the duct, the one-dimensional disturbances propagate mainly upstream 
(for moderate Reynolds numbers). Hence it follows that there is no steady regime of liquid flow 
from a fully filled duct with an open end. 

I n t r o d u c t i o n .  The present paper deals with a theoretical study of the stability of a viscous laminar 
liquid flow with a free surface in an inclined duct. Previous numerical calculations [1, 2] of the parameters 
of such flows in a steady regime revealed a nonmonotonic behavior of the flow rate as a function of the 
free-surface height (Fig. 1). It was established that in a cylindrical duct, the flow rate attains a maximum for 
a layer height H = 1.TR, where R is the duct radius (curve 2, ratio of duct axes 1 : 1.0). In ducts with an 
elliptic cross section extended in the horizontal direction, this maximum is more pronounced (curve 1, ratio 
of duct axes 1 : 1.3). However, if the cross section is elliptic and extended along the vertical, there can be no 
maximum (curve 3, ratio of duct axes 1 : 0.7). The critical ratio of duct axes is about 1 : 0.6. The calculations 
were carried out using various boundary integral equation methods, and, in particular, the complex method 
of boundary elements [3]. 

This behavior of the flow rate can be qualitatively explained by the effect due to the duct walls. Indeed, 
if the liquid occupies the entire cross-sectional area, the walls exert a more intense decelerating effect on the 
flow than in the case of H = 1.TR (a cylindrical duct). In the first case, the velocity of liquid particles is 
maximal at the center of the duct cross section, whereas in the second, the maximum is shifted toward the 
free surface, and, hence, the mean fluid velocity is higher in this case. 

Various aspects of the stability of two-phase laminar ducted flows have been studied, e.g., in [4-6], but 
the problem of salient features of flows in which the height of the liquid layer exceeds the level corresponding to 
the maximum flow rate has not been posed. However, the nonmonotonic behavior of the flow rate suggests that 
this flow region can be unstable even at low Reynolds numbers. Indeed, we assume that in a certain segment 
of the duct, the free surface rises from a level H = 1.8R to a level H = 1.9R as a result of a fluctuation. The 
flow rate decreases locally compared to its initial value, which inevitably gives rise to a compression wave, 
"packing" of the liquid, and, ultimately, to full blocking of the duct in the case of a laminar flow. Thus, in a 
region where the height of the liquid layer exceeds the level that corresponds to the highest flow rate, any rise 
in the free-surface level leads to its further increase. At the same time, any decrease in the layer height (in 
the same region) results in a local increase in the flow rate, "drawing-off" of the liquid flowing above the level 
of the maximum flow rate, and, hence, further lowering of the free-surface level down to a height H = 1.7R. 
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This work is performed to verify this assumption. Since the formulated problem is rather complex, it is 
studied in the simple approximation of long, one-dimensional waves. To close the system of averaged dynamic 
equations, we use an approach which is an improved version of the method of [7] as applied to stability studies 
of liquid flows in the outer portion of a smooth, inclined cylinder. 

1. Der iva t ion  of  t h e  Basic Equa t ions .  We consider a flow with a free surface in a cylindrical duct. 
The following notation is used: a is the slope of the duct to the horizontal, H is the maximum height of the 
free surface, S(z, t) is the cross-sectional area of the duct occupied by the fluid, and L is the width of the 
free surface. The x, y, and z axes are directed downstream along the duct axis, along the vertical, and in the 
transverse direction, respectively, and the velocity components v = (u, v, w) correspond to these coordinates. 

In the stability analysis, the following model is adopted as a first approximation: 
1) The waves are assumed long (kH << 1, where k is the wavenumber); 

2) wetting is ignored; 
3) the waves are considered one-dimensional: H(z, y, z, t) = H(z, t) and dS (z, t) = L(H)dH; 
4) since primary attention is focussed on the region H > 1.6R, all parameters selected are those best 

suited to this section. 
To obtain the governing dynamic equations, we use the following Navier-Stokes equation for the 

streamwise velocity and the continuity equation: 

Ou Ou Ou Ou 10p  Ou Ov Ow 
O---[+u-~z+v-~y+W-~z = p O x + v A u + g s i n a ,  O x + ~ y y + ~ z  = 0 .  (1.1) 

Here v is the kinematic viscosity, p is the liquid density, and g is the free-fall acceleration. 
The boundary conditions for the velocity components are the nonpenetration and attachment 

conditions at the duct wall, the absence of friction at the free surface (Ou/On = 0), and the kinematic 
condition at the free surface for the vertical velocity component: 

dH OH OH 
VH=- dt - O----t + uH Oz" 

Averaging Eqs. (1.1) over the cross-sectional area with allowance for the boundary conditions, we 
obtain the system 

+ + d S = j V ~ n d l + S g s i n a ,  ~ +  - ~ - = 0 .  (1.2) 

Here Q and Q2 denote the specific mass and momentum fluxes: 

Next, the closure problem arises: it is required to express the friction force, the averaged pressure 
gradient, and the momentum flux in terms of S and Q. Following [7], to close the system, we use the hydrostatic 
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TABLE 1 

H0 Q0 [ ~' 
0.10 0.0001 2.322 
0.20 0.0014 1.384 
0.30 0.0052 1.348 
0.40 0.0132 1.341 
0.50 0.0266 1.338 
0.60 0.0465 1.336 
0.70 0.0736 1.335 
0.80 0.1079 1.336 
0.90 0.1491 1.337 
1.00 0.1963 1.339 
1.10 0.2480 ] 1.341 
1.20 0.3021 [ 1.344 
1.30 0.3558 ] 1.346 
1.40 0.4060 [ 1.348 

1 

1.50 0.4485 1.349 
1.60 0.4792 1.348 
1.70 0.4929 I 1.344 
1.80 0.4843 I 1.335 
1.90 0.4493 I 1.325 
1.98 0.4018 [ 1.337 

fll 
25.10 
19.66 
16.86 
15.23 
14.20 
13.50 
13.05 
12.76 
12.61 
12.57 
12.64 
12.83 
13.13 
13.59 
14.24 
15.16 
16.43 
18.28 
21.16 
23.19 

132 
37.26 
28.86 
24.45 
21.80 
20.02 
18.73 
17.78 
17.05 
16.46 
16.00 
15.62 
15.32 
15.07 
14.85 
14.63 
14.40 
14.02 
13.26 
11.37 
9.05 

32.67 
25.39 
21.58 
19.32 
17.82 
16.76 
16.00 
15.43 
15.01 
14.70 
14.50 
14.39 
14.34 
14.37 
14.49 
14.69 
14.93 
15.15 
15.06 
14.38 

I1 r 
0.995 -2.96 
0.989 -0.17 
0.981 -0.07 
0.973 -0.06 
0.962 -0.06 
0.949 -0.07 
0.933 -0.09 
0.913 -0.12 
0.887 -0.15 
0.855 -0.19 
0.811 -0.24 
0.753 -0.29 
0.672 -0.36 
0.553 -0.43 
0.371 -0.47 
0.068 -0.39 

-0.498 0.24 
-1.798 4.10 
-6.467 45.70 

-55.281 3092.96 

approximation (for pressure) and quasistationary approximation (for friction and momentum flux), which are 
applicable for rather long waves: 

= (1.3) 

(1.4) J dl= -/ lvQ; 
c92H 

p = p0 -}- pg cos ~ ( H  - R - y)  - a c9x2.  (1.5) 

Here a is the surface-friction coefficient and ~/and/31 are dimensionless constants. Expression (1.5) is obtained 
in the hydrostatic approximation from the Navier-Stokes equation for the vertical velocity component. The 
term describing the surface friction along the x axis is of the second order of smallness in this model, but it is 
retained in the formula to predict the behavior of the solution with increase in k H  to values of the first order 
of smallness. 

As follows from Table 1, hypothesis (1.4) is not quite adequate since fll can be considered constant 
only in the region 0.4R < H < 1.6R, and, outside it, fll changes by 7-15% as the height changes by OAR. 
Can the closure hypothesis be corrected so that this parameter, which characterizes the ratio of the friction 
force to the liquid flow rate, would exhibit a more conservative behavior? 

It is difficult to derive an expression applicable over the entire range of heights from 0 to 2R since 
as the free-surface level rises~ the key parameters behave differently. For example, the cross-sectional area 
increases monotonically, whereas L and Q take maximum values at a certain height, after which they begin 
to decrease, L varying from 0 (at H = 0 and H = 2R) to 2R (at H = R). 

However, one can propose the following method of "conserving" the constant fl in the segment of 
primary interest. We introduce the parameter fl' = fll A ~ (A = S / L H  and ~ is a real number). By a proper 
choice of #, one can make a linear combination of/3, and/31 practically unchanged over the interval of heights 
of interest. Thus, in the interval 1.6R < H < 2R, the quantities fll and/32 = ~ I / A  exhibit different behavior, 
but their linear combination & = (/31 -I- Xfl2)/(1 -I- X) for a properly chosen X will be more conservative. For 
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a cylindrical duct,  we have X = 1.65 (see Table 1). 
Thus, instead of (1.4), we use the following closure hypothesis: 

+ x /A  I + x /A ( S f Ou ) 
f13 =/~111 +--------~ = 1 + X - ~ . ~  v-~ndl (X = 1.65). (1.6) 

Substi tut ing (1.3), (1.5), and (1.6) into (1.2), we have the following system of dynamic equations: 

OQ O (Q.~_~) ( OH ) a_cOaH Q(1 + x )  
Ot + 7-~x = 5 ' g  s ina--~--xCOSa q- pb'--~-x3 -- ~3u S + x L H '  (1.7) 

OQ LOH 
0--; + Ot = o. 

2. D i s p e r s i o n  R e l a t i o n .  Linearization of system (1.7) and substitution of it into a solution in the 
form H = H0 + H' exp (ikx - iwt) lead to the dispersion relation 

( fll ~C i l l (  a m e o t a  - We K2 ~ = 0 .  (2.1) 
C : -  2 7 + i K R e ]  + 7 + R e k i K  s m a  / 

Here A = So/(LoHo), C = cSo/Qo = wSo/(kQo) and K = kilo are the dimensionless phase velocity and 
the wavenumber, and Re = Qo/(vHo) and We = aSo/(pgLoH~) are the Reynolds and Weber numbers; the 
subscript 0 denotes the steady-flow parameters. The function a(H) equals 1 + f l ,  where 

1 + X + 4xHo(R - Ho)/L 2 
fl  = 1 + xLoHo/So (2.2) 

Equation (2.1) has two roots, which for small K assume the following approximate values: 

fll K [ 7 - 2 a T + a  2 - A c o t a ]  
= 27 - a + + (Zl /Re)  ' 

K[ 7-2aT+a2 ] 
C~ -) = a - -:- A cot a . 

, (/~l/Re) 
Since the amplitude of the disturbance is proportional to exp ( ikx- iwt) ,  the first solution always decays 

for small K since the exponent contains a negative term with the denominator containing the wavenumber 

exp ( - i ( 2 7  - a) - f~l/(I/Re) - g [ ( 7  - 2a3, + a~)/(/~l/Re) - A cot t~])t. 

The second root gives the factor exp ( -a i  + 14[(7 - 2a7 + a2)/(~,/Re) - A cot a])t. 
Hence, the second solution can be unstable if the expression in square brackets is positive. What  sign 

does this expression actually have. 7 
Clearly, at small Reynolds numbers, the second term dominates, thus giving a negative sign to the 

whole expression. By contrast,  at high Reynolds numbers, the sign of the second term or, more exactly, the 
sign of the function ( (H)  = 7 - 2a7 + a 2 is the determining factor. 

Table 1 lists values of f l (H)  and ((H).  For H > 1.6R, we have ( ( H )  > 0, and ( (H)  ~ +oo as 
H ~ 2R. This behavior of ( (H)  is explained by the fact that  the nominator of expression (2.2) contains a 
negative (at H > R) term, whose absolute value increases infinitely as H approaches 2R. 

Thus,  we can conclude that  in the model considered, for an arbitrary Reynolds number there is H. > 
1.6R such that the flow becomes unstable against one-dimensional disturbances for liquid-layer heights H > H.. 

3. D i s p e r s i o n  C u r v e s .  As follows from the aforesaid, the Reynolds number  cannot serve as a stability 
criterion for the flows described by the model of one-dimensional waves. Stability against long-wave one- 
dimensional disturbances depends on two interrelated parameters: the Reynolds number  and the dimensionless 
height of the liquid layer [t = H/R.  Instability is observed at r  (/ t ;  R, g, v, a) >/~IA cot a. 

The  Reynolds number  can be expressed as the product  of two quantities, Re1 and Re2, where Re1 
consists of a set of dimensionless parameters that  depend only on H, and Re2 consists of a set of dimensional 
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parameters that characterizes the physical properties of the liquid (density and viscosity), the dimensions and 
position of the duct (R and a) ,  and the external physical conditions (the presence of a gravity force): 

Re " Rel([I)Re2(R,g,  t,,a) - (~__.o0 R3gsina (3.1) 
H0 u 2 

The Weber number can be represented in the same manner: 

S0 O" 
We = We ( q) We2(R, g, p) - LoB3 ~ pgn2" 

Here t~0 = Qo/(v.R2), v. = R2g sin s /v ,  H0 = Ho/R, Lo = Lo/R, and S0 = So/R 2. 
The first term in (3.1) is called the level part of the Reynolds number, and the second the metric part. 

For a set of parameters g, v, R, and a, the value of the Reynolds number for a duct half-filled with the liquid 
(H = R, -~ = 1) is referred to as the characteristic Reynolds number Rec. The same is true for the Weber 
number. 

The characteristic Reynolds number depends on the physical and geometrical parameters g, v, R, and 
a, i.e., on the metric part. In the numerical calculations, the metric parts of the Re and We numbers were 
such that the Rec and Wee took the following values: 

1) Rec = 0.18, Wec = 0.05, a = 10~ 
2) Rec = 5.74, Wee = 0.005, a = 10~ 
3) Rec = 202.6, Wec = 0.0001, a = 1~ 
4) R e c = 2 0 1 6 ,  Wec=0 .0001 ,  a = 1 0  ~ 

These values correspond to the glycerin parameters (u = 1.1 �9 10 -3 m2/sec, a = 59.4 �9 10 -3 N/m, and 
p = 1260 kg/m3). 

Figure 2 shows the dependence of the imaginary part of the frequency Im w on the wavenumber k for 
various levels of the free surface and various characteristic Reynolds numbers: Rec  = 0.18 (a), Rec = 5.74 
(b), and Rec = 202.6 (c). Evidently, as Rec increases, the critical liquid height that  corresponds to neutral 
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disturbances decreases to a level H = 1.6R, i.e., to the point that corresponds to the maximum flow rate of 
the liquid. For very high Rev, whose level part corresponds to H < 1.6R, all disturbances are nearly neutral. 

For small Rec and rather high free-surface level, the real parts of the phase (ReC) (Fig. 3) and 
group [Re(dw/dk)] (Fig. 4) velocities of propagation of disturbances are negative. Hence, such disturbances 
propagate upstream, which is consistent with the reasoning given in the introduction. This suggests that at 
rather small Reynolds numbers, there is no steady regime of liquid flow in a fully filled duct with an open 
butt-end. Accidental occurrence of an air interlayer at the duct outlet will inevitably cause lowering of the 
liquid level over the entire duct or transition to wave flow regimes. Obviously, at high Reynolds numbers, the 
disturbances are carried downstream, and, upstream, only very long waves can propagate when the height of 
the layer is close to the duct diameter. 

The question of whether the above conclusions are applicable to a real situation, where the assumption 
of a horizontal free surface becomes false as H approaches 2R, remains open. This issue is the subject of a 
separate study using a more complicated model. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 95-01- 
00879). 
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